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a b s t r a c t 

Physics-based simulation of energy use in buildings is widely used in building design and performance 

rating, controls design and operations. However, various challenges exist in the modeling process. Model 

parameters such as people count and air infiltration rate are usually highly uncertain, yet they have sig- 

nificant impacts on the simulation accuracy. With the increasing availability and affordability of sensors 

and meters in buildings, a large amount of measured data has been collected including indoor environ- 

mental parameters, such as room air dry-bulb temperature, humidity ratio, and CO 2 concentration levels. 

Fusing these sensor data with traditional energy modeling poses new opportunities to improve simula- 

tion accuracy. This study develops a set of physics-based inverse algorithms which can solve the highly 

uncertain and hard-to-measure building parameters such as zone-level people count and air infiltration 

rate. A simulation-based case study is conducted to verify the inverse algorithms implemented in Ener- 

gyPlus covering various sensor measurement scenarios and different modeling use cases. The developed 

inverse models can solve the zone people count and air infiltration at sub-hourly resolution using the 

measured zone air temperature, humidity and/or CO 2 concentration given other easy-to-measure model 

parameters are known. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

1.1. Building energy modeling 

Building energy modeling plays a critical role in researches

and applications such as model predictive controls (MPC) [1] and

operations [2,3] and building energy retrofit analyses [4] . Common

building energy modeling approaches include physics-based ap-

proaches, aka white-box approaches, and data-driven approaches,

aka the black-box approaches. 

Physics-based or forward modeling approaches explicitly model

the interactions among weather conditions, building geometry, en-

velope, service systems, occupants, control strategies, and energy

performance. The physics-based models can be further classified

into reduced order models [5,6] and dynamic models [7,8] based

on complexity. A reduced order model is usually a set of resistor-

capacitor (RC) networks and is more computationally efficient than

the detailed dynamic models. Therefore it is often used in situa-

tions when a short simulation time is critical, such as MPC [9] . On

the other hand, detailed dynamic models describe the energy flows
∗ Corresponding author. 

E-mail address: thong@lbl.gov (T. Hong). 

t  

b  

d  

https://doi.org/10.1016/j.enbuild.2019.06.008 

0378-7788/© 2019 Elsevier B.V. All rights reserved. 
mong building energy systems with physics laws and are solved

ith differential equations to provide more accurate results. The

ynamic models are often more time consuming to build and solve

2] . With decades of research and development in the building

nergy modeling field, powerful tools, such as EnergyPlus, TRNSYS

10] , ESP-r [11] have been developed and improved to model

etailed buildings and systems with complex occupant behaviors

nd control settings. The increasing computational power also

akes building energy modeling more and more widely adopted.

owever, detailed physics-based building energy models can be

ery sensitive to model assumptions. In reality, the discrepancies

etween design and actual building characteristics, the simplifi-

ation of the building geometry, occupancy and system operation

chedules, and the errors in computation can all negatively impact

he model’s accuracy of reflecting the real situations. Therefore,

esearchers have focused on calibrating the building energy mod-

ls to match the measurements, so that the model can be used for

redictive controls or evaluation of optimization strategies [12,13] . 

Data-driven approaches gained lots of attentions in recent

ears. They often require a large amount of measurement data

o train a reliable model that can reasonably represent the

uilding’s energy performance or other characteristics under

ifferent operation conditions. A list of literature reviewed the

https://doi.org/10.1016/j.enbuild.2019.06.008
http://www.ScienceDirect.com
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Nomenclature 

C z currnt zone air sensible heat capacity mul- 

tiplier 

T z current zone air temperature [K] 
˙ Q i ith internal sensible heat gain rate of the 

current zone [W] 

h i convective heat transfer coefficient of ith 

internal surface of the zone [W/(m 

2 · K)] 

A i area of ith internal surface of the zone 

[m 

2 ] 

T si temperature of ith internal surface of the 

zone [K] 

˙ m i _ zone mass flow rate of air from ith nearby zone 

[kg/s] 

C pi specific heat capacity of the air from ith 

nearby zone [J/kg] 

T zi temperature of the air from ith nearby 

zone [K] 

˙ m in f infiltration air mass flow rate [kg/s] 

T ∞ 

outdoor air temperature [K] 
˙ Q sys sensible heat transfer rate due to HVAC 

system supply [W] 

T sup HVAC system supply air temperature [K] 

C w 

currnt zone air humidity capacity multi- 

plier 

W z currnt zone air humidity ratio 

[ k g water / k g dry _ air ] 

m w _ i ith internal moisture gain of the current 

zone [kg/s] 

h mi moisture transfer coefficient of ith internal 

surface [m/s] 

W si humidity ratio of the air near the ith sur- 

face of the zone [ k g water / k g dry _ air ] 

˙ m i _ zone mass flow rate of the air from ith nearby 

zone [kg/s] 

W zi humidity ratio of the air from the ith 

nearby zone [ k g water / k g dry _ air ] 

W ∞ 

outdoor air humidity ratio 

[ k g water / k g dry _ air ] 

˙ m sys HVAC system supply air mass flow rate 

[kg/s] 

W sup HVAC system supply air humidity ratio 

[ k g water / k g dry _ air ] 

C C O 2 currnt zone air CO 2 capacity multiplier 

C z currnt zone air CO 2 concentration [ppm] 

m C O 2 _ i 
sum of scheduled internal carbon dioxide 

loads of the current zone [pm · kg/s] 

C zi ith nearby zone air 

CO 2 concentration [ppm] 

C ∞ 

outdoor air CO 2 concentration [ppm] 

C sup HVAC system supply air 

CO 2 concentration [ppm] 
˙ Q except _ people _ i internal sensible heat gain rate from ith 

sources except people [W] 
˙ Q single sensible heat dissipation rate of a single 

person [W] 

˙ m w _ except _ people _ i internal moisture gain rate from ith 

sources except people [kg/s] 

m w _ single moisture dissipation rate of a single person 

[kg/s] 

˙ m C O 2 _ except _ people _ i internal CO 2 gain rate from ith sources ex- 

cept people [pm · kg/s] 
h  
m C O 2 _ single CO 2 dissipation rate of a single person 

[pm · kg/s] 

Superscripts 

X 

t the value of X at current timestamp 

X t−δt the value of X at one timestep before current times- 

tamp 

X t−2 δt the value of X at two timestep before current times- 

tamp 

X t−3 δt the value of X at three timestep before current 

timestamp 

ata-driven building energy prediction approaches [2,14–16] . The

ain steps of data-driven approaches include data collection,

ata pre-processing, model training, and model testing [14] . A

unch of factors can affect the accuracy and scalability of the

odel built purely on data. First of all, the data collection pro-

ess can be challenging. Some important sensor and meter data

eeded by the data-driven approaches may not be available in

very building. Data quality is another issue; data from different

uilding systems usually have different measurement periods and

emporal resolutions. Missing data is always a main barrier to

rain and test models. Moreover, the measurements may not cover

ll the operation schemes, leading to a lack of full coverage of real

perations by the trained models. 

.2. Measurements of uncertain model inputs 

Among the building energy model inputs, air infiltration and

eople count are two variables that are highly uncertain and hard

o measure directly at the zone level. Studies have shown that they

ave significant impacts on the energy simulation results [13,17–

9] . In most cases, air infiltration and people count are set as

xed schedules, which do not reflect the dynamic reality. Various

ethods have been developed to directly measure or indirectly

alculate the zone air infiltration rates and people counts. 

For the air infiltration rate, the most commonly used methods

re tracer gas method and blower door method. Tracer gas method

as been widely used to measure the infiltration rates in buildings

ince the 1980s. There are three categories of the method—

ilution, constant injection, and constant concentration [20] . The

undamental of this method is the mass conservation of the tracer

as. The air infiltration rates can be calculated by monitoring the

elationship of tracer gas injection and the concentration change

21,22] . The blower door method is another widely used method

o measure the air airtightness of buildings. This method is also

nown as the fan pressurization method, which employs a large

oor-mounted fan to blow air into the building to quantify the

ir infiltration rate at a certain indoor-outdoor pressure difference

23] . Both tracer gas and blower door methods have been vali-

ated and used in enormous research and industrial application

onditions. However, those methods have limitations such as the

equirements of special devices, the disruptions to occupants,

nd potentially high time and labor costs. Some novel methods

ave been proposed in recent years to avoid those drawbacks

hile measuring the air infiltration rates. Examples are CFD-based

pproaches which use infrared images along with indoor and

utdoor air parameter measurements and fluid mechanics analysis

o quantify the air infiltration rate and pin-point the location

f the air leakage [24] . However, the CFD-based methods usually

eed expertise in the geometry modeling, meshing, and simulation

ssumptions, which is hard to scale up. 

Occupant behavior is a critical input in building performance

odeling. The high uncertainty of occupants’ presence and be-

avior have significant impacts on building energy modeling [25] .
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There is a wide spectrum of studies in detecting occupancy in

buildings. The common methods of direct occupancy detection

include (1) motion sensors, (2) vision-based technologies, and

(3) radio-frequency localization technologies [26] . Some of the

limitations of those technologies include the high cost and main-

tenance effort of the sensors, low accuracy in shared spaces,

and privacy concerns. In recent years, some methods have been

proposed to infer the occupancy and people count with advanced

analytical and machine learning approaches. Wang et al. [27] de-

veloped a method to predict occupancy with fused environmental

sensing and Wi-Fi sensing data using machine learning techniques.

Candanedo et al. [28] developed a statistical learning model with

light, temperature, humidity and CO2 measurements to detect

occupancy. Those methods showed good agreements with the

ground truth. But one limitation is they require dedicated data

processing and feature engineering to train reliable models. 

1.3. Solving hard-to-measure parameters with inverse models 

Decades of effort have been put into the development and

refinement of physics-based building energy simulation tools. The

integrated simulation engine EnergyPlus [29] has been through

numerous tests and validations. It is now widely used in both

research and commercial applications. At the same time, the cost

of environmental sensing in buildings has declined. Many modern

buildings are equipped with monitoring and control systems that

can easily measure the HVAC system supply air and zone level

air temperature, humidity, and CO 2 concentration. Traditionally,

building energy simulation is used to predict the building’s energy

consumption and environmental parameters. However, backed

by the well-tested physical principles, the building models can

theoretically solve unknown parameters with reasonable model

assumptions and accurate environmental measurements. Lee and

Hong [30] proposed an inverse modeling approach, which uses the

measured zone air temperature as the model inputs and solves the

zone thermal mass or air infiltration rate. The thermal mass and

air infiltration rate solved by the proposed method is implemented

in EnergyPlus and validated with field measurements [30] under

the free-floating condition. 

In this study, a set of new inverse modeling algorithms are

developed. The algorithms are based on the air sensible heat,

humidity, or CO 2 conservation equations. Section 2 describes

the theoretical fundamentals of the inverse balance equations.

Section 3 presents a simulation-based case study, which shows

the application of the inverse modeling algorithms with dif-

ferent availability of environmental measurements and model

assumptions. The interpretation of the results is also discussed.

Section 4 summarizes the case study results and discusses the

pros and cons of the proposed inverse modeling algorithms.

Section 5 gives the conclusions. 

2. Methodology 

The methodology of this study consist of three parts—(1)

derivation of the inverse models, (2) implementations in Ener-

gyPlus, and (3) verification case study. Fig. 1 shows the overall

methodology map. 

2.1. The zone air balance equations 

The physics-based zone air heat, moisture, and contaminant

equations [29] serve as the basis of the inverse modeling algo-

rithms. The forward balance equations take into account the effect

of internal heat gains (e.g., lighting system, electrical equipment,

people, etc.), heat/mass exchanges with surfaces, connected zone

air, outdoor air infiltration, as well as HVAC system supply air.
he relationship between zone air sensible heat change and heat

ransfers from various sources can be expressed as the following: 

 z 
d T z 

dt 
= 

N sl ∑ 

i =1 

˙ Q i + 

N sur faces ∑ 

i =1 

h i A i ( T si − T z ) + 

N zones ∑ 

i =1 

˙ m i _ zone C pi ( T zi − T z ) 

+ 

˙ m in f C p ( T ∞ 

− T z ) + 

˙ Q sys (1)

here C z is the zone air total sensible heat capacity multi-

lier, 
∑ N sl 

i =1 
˙ Q i is the sum of convective internal heat gains,

 N sur faces 

i =1 
h i A i ( T si − T z ) is sum of convective heat gains from interior

urfaces, ˙ m in f C p ( T ∞ 

− T z ) is the convective heat gain from outdoor

ir infiltration, and 

˙ Q sys is the convective heat transfer from the

VAC systems. 

Similarly, the zone air moisture balance equation can be ex-

ressed as: 

 w 

d W z 

dt 
= 

N sl ∑ 

i =1 

m w _ i + 

N sur faces ∑ 

i =1 

A i h mi ρair ( W si − W z ) 

+ 

N zones ∑ 

i =1 

˙ m i _ zone ( W zi − W z ) + 

˙ m in f ( W ∞ 

− W z ) 

+ 

˙ m sys ( W sup − W z ) (2)

here C w 

is the zone air moisture capacity multiplier, 
∑ N sl 

i =1 
m w _ i 

s the sum of internal moisture gains, 
∑ N sur faces 

i =1 
A i h mi ρair ( W si − W z )

s the sum of moisture gains from the interior surfaces,
 N zones 
i =1 

˙ m i _ zone ( W zi − W z ) is the sum of moisture gains from the

onnected zones, ˙ m in f ( W ∞ 

− W z ) is the moisture gain from out-

oor air infiltration, and ˙ m sys ( W sup − W z ) is the moisture gain from

he HVAC systems. 

And the zone air CO 2 mass balance equation can be expressed

s: 

 C O 2 

d C z 

dt 
= 

N sl ∑ 

i =1 

m C O 2 _ i + 

N zones ∑ 

i =1 

˙ m i _ zone ( C zi − C z ) + 

˙ m in f ( C ∞ 

− C z ) 

+ 

˙ m sys ( C sup − C z ) (3)

here C C O 2 is the zone air CO 2 capacity multiplier, 
∑ N sl 

i =1 
m C O 2 _ i 

is

he sum of internal CO 2 gains, 
∑ N zones 

i =1 
˙ m i _ zone ( C zi − C z ) is the CO 2 

ains from connected zones, ˙ m in f ( C ∞ 

− C z ) is the CO 2 gains from

utdoor air infiltration, and ˙ m sys ( C sup − C z ) is the CO 2 gains from

he HVAC systems. 

.2. The inverse modeling algorithms 

The inverse modeling algorithms are developed to solve the

one air balance equations in their ordinary differential format.

n this study, EnergyPlus is used as the simulation engine which

mplements these inverse models. But the methodology is generic

nd can be applied to other physics-based simulation engines.

epending on the model assumptions and available measured

one parameters, the inverse modeling algorithms can be used

o solve different unknown parameters such as people count, air

nfiltration rate, zone internal thermal mass, and HVAC supply

irflow rate. Zone level people count and air infiltration are two

nfluential model parameters yet hard to measure. Thus, this study

mplemented the inverse algorithms in EnergyPlus to solve people

ount and air infiltration rate using easily measurable zone param-

ters such as air temperature, humidity and/or CO 2 concentration.

ig. 2 shows the solution of those two unknown parameters with

hree indoor environmental parameter measurements under vari-

us scenarios. The system supply terms can be ignored when the

VAC is off since there is no sensible heat/moisture/CO 2 transfer

etween the HVAC system supply air and zone air. But they must

e provided when the HVAC is on during the measurements. 
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Fig. 1. Overall methodology. 
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Fig. 2. Relationship between measured parameters and inversely solvable unknown 

parameters. 
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The ordinary differential Eqs. (1) –(3) can be solved with the fi-

nite difference approach which requires time-series measurements

of zone air temperature, humidity ratio, or CO 2 concentration.

With the smart sensor network, the measurements are easily

accessible in modern buildings. EnergyPlus uses third-order back-

ward approximation [8] to solve dry-bulb temperature, humidity

ratio, or CO 2 concertation with the balance Eqs. (1) –(3) in its

zone predictor-corrector [8] solution. It was proved to provide

sufficient accuracy. Therefore, the proposed inverse algorithms also

adopt the third-order backward approximation approach. With the

third-order backward approximation, Eqs. (1) –(3) and be inversely

re-written as (4) , (5) , and (6) , respectively: 

 z 

11 
6 

T t z − 3 T t−δt 
z + 

3 
2 

T t−2 δt 
z − 1 

3 
T t−3 δt 

z 

δt 

= 

N sl ∑ 

i =1 

˙ Q i + 

N sur faces ∑ 

i =1 

h i A i 

(
T t si − T t z 

)
+ 

N zones ∑ 

i =1 

˙ m i _ zone C p 
(
T t zi − T t z 

)
+ 

˙ m in f C p 
(
T t ∞ 

− T t z 

)
+ 

˙ m sys C p 
(
T t sup − T t z 

)
(4)

 wz 

11 
6 

W 

t 
z − 3 W 

t−δt 
z + 

3 
2 
W 

t−2 δt 
z − 1 

3 
W 

t−3 δt 
z 

δt 

= 

N sl ∑ 

i =1 

m C O 2 _ i + 

N sur faces ∑ 

i =1 

A i h mi ρair 

(
W 

t 
si −W 

t 
z 

)
+ 

N zones ∑ 

i =1 

˙ m i _ zone 

(
W 

t 
zi −W 

t 
z 

)
+ 

˙ m in f 

(
W 

t 
∞ 

− W 

t 
z 

)
+ 

˙ m sys 

(
W 

t 
sup − W 

t 
z 

)
(5)

 C O 2 

11 
6 

C t z − 3 C t−δt 
z + 

3 
2 
C t−2 δt 

z − 1 
3 
C t−3 δt 

z 

δt 

= 

N sl ∑ 

i =1 

m w _ i + 

N zones ∑ 

i =1 

˙ m i _ zone 

(
C t zi − C t z 

)
+ 

˙ m in f 

(
C t ∞ 

− C t z 
)

+ 

˙ m sys 

(
C t sup − C t z 

)
(6)

The superscript notations of T z , W z , and C z represent the times-

tamp of the measurements. For example, T t z is the measured zone

air dry-bulb temperature at the current timestamp, while T t−δt 
z is

the measured air dry-bulb temperature at one time step earlier

than the current timestamp. 

From Eqs. (4) to (6) , it can be inferred that it is critical to model

other terms accurately to use the inverse algorithms, because the

inversely solved air infiltration and people count will be overfitted

if other terms in the balance equations are highly uncertain. The

inverse modeling algorithms work under the following conditions

(the exact conditions vary depending on which parameter is used

as input): 

(1) The zone air sensible thermal mass, total humidity capacity,

or total CO concentration capacity is known and fixed. 

˙ m in f = 

C z 
11 
6 T 

t 
z −3 T t−δt 

z + 3 2 T 
t−2 δt 
z − 1 

3 T 
t−3 δt 
z 

δt 
−

[ ∑ N sl 

i =1 
˙ Q i + 

∑ N sur faces 

i =1 
h i A i 

(
T t 

si 
− T z

C p 
(
T t ∞ 

− T tz

˙ m in f = 

C wz 

11 
6 W 

t 
z −3 W 

t−δt 
z + 3 2 W 

t−2 δt 
z − 1 

3 W 

t−3 δt 
z 

δt 
−

[ ∑ N sl 

i =1 
m w _ i + 

∑ N sur faces 

i =1 
A i h mi

W 

t∞

˙ m in f = 

C C O 2 
11 
6 C 

t 
z −3 C t−δt 

z + 3 2 C 
t−2 δt 
z − 1 

3 C 
t−3 δt 
z 

δt 
−

[∑ N sl 

i =1 
m C O 2 _ i + 

∑ N zones 

i =1 
˙ m i _ zone 

(
C

C t ∞ 

− C t z 
2 
(2) If the system supply air temperature, humidity ratio, or CO 2 

concentration is not measured, the inverse algorithms are

only valid under the free-floating (HVAC system is off) mode.

(3) The zone internal sensible heat gains, moisture gains, or CO 2 

gains are modeled at a reasonable accuracy. 

(4) The inter-zone air exchange is modeled at a reasonable ac-

curacy. 

(5) The convective heat, moisture, or CO 2 transfer between zone

surfaces and zone air are modeled at a reasonable accuracy. 

(6) The sensible heat generation rate, moisture and CO 2 dissipa-

tion rate of a single person are known. 

.2.1. Inverse modeling algorithms to solve zone air infiltration 

With the measured zone air parameters, the air infiltration

ass flow rate ˙ m in f can be solved with Eqs. (7)–(9) as shown

elow. For example, Eq. (7) calculates the sensible heat gain (or

oss) rate from air infiltration with the zone air sensible heat bal-

nce equation, and then solves the infiltration mass flow rate with

he infiltration heat capacity and outdoor-indoor air temperature

ifference. If the HVAC is on during the measurements, the system

upply air mass flow rate and supply air temperature also need to

e measured. 

 N zones 

i =1 
˙ m i _ zone C p 

(
T t 

zi 
− T t z 

)
+ 

˙ m sys C p 
(
T t sup − T t z 

)] 
(7)

W 

t 
si 

− W 

t 
z 

)
+ 

∑ N zones 

i =1 
˙ m i _ zone 

(
W 

t 
zi 

− W 

t 
z 

)
+ 

˙ m sys 

(
W 

t 
sup − W 

t 
z 

)] 
 

t 
z 

(8)

C t z 
)

+ 

˙ m sys 

(
C t sup − C t z 

)]
(9)

.2.2. Inverse modeling algorithms to solve zone people count 

With the measured zone air parameters, the zone people count

 occ can be solved with the following pairs of equations. For

nstance, Eq. (10) solves the zone total internal heat gain rate,
 N sl 
i =1 

˙ Q i . Then, Eq. (11) solves the number of occupants in the

one by dividing the total sensible heat gain rate from people,
 N sl 
i =1 

˙ Q i −
∑ N sl 

i =1 
˙ Q excep t peopl e i 

, to the sensible heat generation rate

f a single person, ˙ Q single . Similar to the algorithms solving air

nfiltration rate, the system supply air mass flow rate and supply

ir temperature need to be measured if the HVAC system is on.

q. (12) and (13) solve the people count with measured humidity



H. Li, T. Hong and M. Sofos / Energy & Buildings 198 (2019) 228–242 233 

r  

C

∑

N

∑

N

∑

N

2

 

t  

t  

t  

C  

a  

g  

r  

t  

p  

t  

o  

w  

t  

m  

t  

C  

E  

s

 

a  

H  

c  

t  

p  

m  

c  

v  

p  

t  

h

3

 

p  

E  

T  

o

3

 

m  

fl  

e  

r  

w  

a  

t  

p  

m  

a  

o  

c  

v

 

m  

m  

p  

a  

o  

i  

[  

t  

C  

o  

s  

t  

g  

r  

p

3

 

i  

r  

T  

a

 

 

 

 

 

 

 

 

atio. Eqs. (14) and (15) solve the people count with measured

O 2 concentration. 
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.3. Convergence 

There can be many factors affecting the convergence when

rying to solve the differential equation numerically with the

hird-order backward approximation. The most common issue is

he overflow. The latest version of EnergyPlus code is written in

 ++ . Just as any other language, it overflows when the result from

n operation exceeds a certain range. For the inverse modeling al-

orithms, overflow can happen when calculating the air infiltration

ate. For instance, the indoor-outdoor air temperature difference

erm ( T t ∞ 

− T t z ) can be a very small number when the two tem-

eratures are very close. Overflow will happen if the program tries

o calculate the air infiltration rate by dividing the denominator

f Eq. (7) by C p ( T 
t ∞ 

− T t z ) . Therefore, conditional checks are needed

hen implementing the algorithm in the code. In this case, a

hreshold of 0.05 °C or greater temperature difference must be

et to calculate the infiltration rate at one timestamp. Similarly,

hresholds are added for the algorithms using humidity ratio and

O 2 concentration. In practice, the thresholds implemented in

nergyPlus routines don’t have significant impacts on its ability to

olve the unknown parameters in our tests. 

In addition, EnergyPlus uses a zone predictor-corrector mech-

nism to calculate the heating or cooling needs of a zone on the

VAC system, and update the zone air parameters based on the

alculated amount of heating or cooling the HVAC system provides

o a zone. The uncertainties such as truncation errors in those

redictor-corrector routines can cause an anomaly in the inverse

odeling routine. Therefore, thresholds for infiltration and people
ount calculation are applied to the code. For infiltration, a valid

alue must be within the range of 0–10 air changes per hour. For

eople count, the lower bound is zero, and the upper-bound is

he total possible internal heat/moisture/CO 2 gain divided by the

eat/moisture/CO 2 generation rate. 

. Case study 

To verify that the inverse modeling algorithms are correctly im-

lemented in EnergyPlus and to demonstrate the use of the new

negryPlus feature, a simulation-based case study was conducted.

his section presents model settings, solution scenarios, and results

f the case study. 

.1. Model settings 

An EnergyPlus building model is used in the case study. The

odel represents a two-story building with two zones on each

oor with a 1600 m 

2 total floor area. Three locations are consid-

red to cover typical hot, cold, and mild climate. There are two

ounds of simulations. The first round is the forward simulation,

here the air infiltration rate and people count are provided

s model inputs. The forward simulation is used to generate

he virtual measurements of the zone air and system supply air

arameters. Then in the second round of simulations, the virtual

easurements are provided as the inputs to the inverse modeling

lgorithms to solve zone air infiltration or people count. Since

nly one unknown variable can be solved at a time, the people

ount should be provided when solving the air infiltration, and

ice versa. Table 1 shows the model setting details. 

In the forward simulation, air infiltration is modeled with the

aximum air change rate and a schedule of the fractions of the

aximum value at different hours of a day. Similarly, the zone

eople count is modeled with the maximum number of people

nd a schedule indicating the fractions of the maximum number

f people at different hours. The forward simulation uses the

nfiltration rate schedule from DOE prototype small office building

31] . People’s behavior and movements in real buildings are hard

o predict, which affect the presence of people in building spaces.

hen et al. [32] developed an agent-based algorithm to simulate

ccupant movements using Markov-chain model. Based on the

tudy, an application was developed. In this case study, a stochas-

ic occupant schedule generated by the application is used as the

round truth to mimic the high uncertain people movements in

eal buildings. Figs. 3 and 4 show the air infiltration and example

eople count schedule for a day. 

.2. Inverse solution scenarios 

There can be different use cases and solution scenarios with the

nverse modeling algorithms depending on which measured pa-

ameters and model details are available in the inverse simulation.

hus, experiments with different level of details of measurements

nd model assumptions are carried out in the case study. 

(1) The simplest use case is when the building’s HVAC system

is off, and the building is at free-floating mode during the

zone air measurements and the HVAC system is not mod-

eled in both the forward simulation and inverse simulation.

This case is most suitable when limited measurements

and limited building model details are available. However,

it requires the building’s HVAC system be turned off. For

example, this case can be used to solve air infiltration rate

when HVAC system is off during unoccupied hours. 
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Table 1 

Model settings of the case study. 

Fig. 3. Air infiltration schedule. 
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(2) A more complex use case is when the HVAC is on during

the zone air measurements, but no HVAC detail is modeled

in the inverse simulation. In this case, the HVAC system

is not modeled in the forward simulation, but both zone

air parameters and the HVAC system supply air parameters

are measured and used in the inverse simulation. However,

since HVAC is not modeled in the forward simulation, its

effects on the zones interior surfaces are not accounted. This

use case is most beneficial when the HVAC supply parame-

ters can be easily measured, but the detailed system config-

urations are hard to be modeled (due to lack of information).

(3) The most complicated use case is when the HVAC is on

during the zone air measurements, and HVAC details are

modeled in the inverse simulation. This case requires not

only the measurements but also the detailed HVAC infor-

mation for the inverse model. It is most beneficial when
 a
both measurements of the HVAC supply parameters and the

modeling of HVAC details are achievable. 

Fig. 5 shows the different model inputs and measurements for

he three use cases. 

Table 2 shows the required measurements and model assump-

ions for different use cases and solution scenarios. 

.3. Results 

Based on the previous discussion, there are 216 combinations

2 unknown parameters x 4 zones x 3 locations x 3 measurements

 3 uses cases) in the case study. To illustrate the results, this

ection first presents time-series comparison examples between

he ground truth and the inverse solutions. Then it presents the

tatistical metrics of the inverse solutions and summarizes the

pplicability of different use cases. 
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Fig. 4. Occupancy schedule. 

Fig. 5. Air infiltration schedule. 

 

b  

F  

i  

r  

c

 

a  

a  

u  

t  

m

 

a  

p  

s  

c

 

a  

s  
Time-series charts can help visually inspect the alignments

etween the inverse solution and the ground truth. Fig. 6 through

ig. 8 show the ground truth and the inverse solution of the air

nfiltration rate at one zone in the model for three use cases. The

esults from Chicago are selected since it covers hot summer and

old winter. 

As shown in the three figures above, the inverse solution of

ir infiltration rates with measured temperature, humidity ratio,

nd CO 2 concentration have different performance for different

se cases. The occurrences and frequencies of the spikes (ex-
reme values) in the inverse solutions vary by use cases and

easurements. 

Since there is more diversity in occupant count schedule, an

nnual comparison and a weekly comparison are used in the

lots. Fig. 9 through Fig. 11 show the ground truth and the inverse

olution of people count at one zone in the model for three use

ases. 

Similar to the inverse solutions of air infiltration rates, the

ccuracy of the inverse solutions vary by use case and mea-

urements. However, there is an apparent discrepancy between
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Table 2 

Inverse solution use cases and scenarios. 

Use cases Case 1 Case 2 Case 3 

Scenarios S1 S2 S3 S4 S5 S6 S7 S8 S9 

HVAC status during measurement Off Off Off On On On On On On 

HVAC is modeled No No No No No No Yes Yes Yes 

Climate zones Chicago, Houston, San Francisco 

Measured parameter(s) Zone air temperature x x x 

Zone air humidity ratio x x x 

Zone air CO 2 
concentration 

x x x 

Supply air temperature x x 

Supply air humidity 

ratio 

x x 

Supply air CO 2 
concentration 

x x 

Supply air mass flow 

rate 

x x x x x x 

Note HVAC is off during 

measurements; no HVAC is 

modeled in the inverse 

simulation 

HVAC is on during 

measurements; no HVAC is 

modeled in the inverse 

simulation 

HVAC is on during 

measurements, HVAC is modeled 

in the inverse simulation 

Fig. 6. Use Case 1 time-series comparison of the inverse solution and the ground truth of air infiltration rates. 
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the inverse solution and the ground truth for Case 2, when

the measurement is zone air temperature. During the cooling

season, the inverse solution of people count is smaller than the

ground truth. The reason for the discrepancies will be discussed

shortly. 

The time-series comparisons between the ground truth and the

inverse solutions give a snapshot of how the inverse algorithm

work overall. Comparison of the probability density between the

inverse solution and the ground truth can provide a statistical

view of how the inverse modeling algorithms perform in solving

the unknown air infiltration rate or people count. Figs. 12 and

13 show the probability density distributions of the ground truth

and the inverse solutions of different use cases in three experi-

mental locations for a single zone in the modeled building. The

density violin plots (smoothed by the kernel density estimator)
se the data aggregated from 10-minute time interval values

or a whole year. The plots reflect the full distribution of the

round truth and inverse solutions. In the facet plot grid, each

ow corresponds to one use case (see details in Table 2 ) and each

olumn corresponds to a location. There are four traces in each

hild plot – one ground truth and three solution scenarios with

he measured air temperature, measured air humidity ratio, and

easured CO 2 concentration, respectively. 

For example, in Fig. 12 , the sub-plot in row one and column

ne shows the probability density distribution of the ground

ruth of the air infiltration rate and the inverse solutions for Use

ase 1 in Chicago. There are three bulks in the violin plot where

ach bulk reflects the local average of the value while the width

eflects the frequency. In this case, the ground truth has three

ypical values (1, 0.5, and 0.25) of air infiltration rate as shown
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Fig. 7. Use Case 2 time-series comparison of the inverse solution and the ground truth of air infiltration rates. 

Fig. 8. Use Case 3 time-series comparison of the inverse solution and the ground truth of air infiltration rates. 

i  

t  

t  

p  

w  

w  

c  

d  

f  

r  

t  

a

n Fig. 3 . The inverse solutions have similar violin plots with

he ground truth, which means the solution matches the ground

ruth well. It can be seen from the figures that in general the

robability density distribution of the inverse solution aligns well

ith the ground truth. There is one exception for the solution

ith Use Case 2 when solving with measured temperature (row 2,
olumn 2 in Fig. 12 ). In this case, the solution’s probability density

istribution shows there are many times when the solution differ

rom the ground truth, especially when the infiltration air change

ate is below 0.25 (indicated by the large area at the bottom of

he violin plot). The reasons for the poor performance of this case

re discussed in the last two paragraphs of Section 4 . 
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Fig. 9. Use Case 1 time-series comparison of the inverse solution and the ground truth of people count. 

Fig. 10. Use Case 2 time-series comparison of the inverse solution and the ground truth of people count. 
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The interpretation of Fig. 13 is similar to that of Fig. 12 . The

beads-like violin plots show the probability density distributions

of the ground truth and inverse solutions of the people count.

Each “bead” in the plot represents a local average of the people

count in the schedule. Like the air infiltration rate, the solutions of

people count with temperate in Use Case 2 differ from the ground

truth, which is also indicated in Fig. 10 . 
Coefficient of Variance of the Root Mean Square Deviation

V(RMSD) is a commonly used index to quantify how well

he predictions describe the variability of the ground truth.

able 3 shows the CV(RMSD) between the inverse solutions and

he ground truth. Smaller values of CV(RMSD) suggest better

lignments between the inverse solution and the ground truth.

he values are color-coded in the tables where green stands for a
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Fig. 11. Use Case 3 time-series comparison of the inverse solution and the ground truth of people count. 

Fig. 12. Probability density plots of the ground truth and the inverse solution of air infiltration rates. 
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Fig. 13. Probability density plots of the ground truth and the inverse solution of people count. 
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small value and red stands for a large value to better visualize the

performance of different use cases and scenarios. 

It can be seen from the table that the accuracy of the inverse

solutions varies by solution scenarios and locations. In general, the

solutions from Case 1 and Case 3 have higher accuracy than Case

2. For example, Scenario 1 (free-floating, solved with measured

temperature) shows the lowest CV(RMSD) among the solutions

of air infiltration. Case 3 (Scenario 7 ∼ 9) shows better accuracy

than Case 2 (Scenario 4 ∼6). Similar results can be seen from the

solutions of people count where the accuracy of Case 1 and Case

3 are better than Case 2. 

EnergyPlus uses a predictor-corrector mechanism to simulate

the relationship between the HVAC system and the zone air. In the

“predictor” step, the HVAC system load is estimated from the zone

heat gains. In the “corrector” step, the zone air and related terms

are updated with the actual simulated HVAC system supplies. 

The reasons for the worse accuracy of Case 2 when trying to

solve with the sensible heat balance equations include: (1) the

inaccuracy from uncertain zone internal thermal mass, and (2) the

convective heat transfer between zone interior surfaces and the

zone air may not be accounted correctly. In Case 1, the HVAC sys-

tem is off during both the measurement and the solution period. In

the solution period, HVAC kept off (achieved by the dual setpoints

thermostat control logic with extremely low cooling setpoint and

extremely high setpoints in EnergyPlus). The solution reflects the

actual zone air heat balances. However, in Case 2, HVAC is on

during the measurement period while it is not simulated in the

solution period. Although the zone air parameters and system sup-

ply terms are provided in the inverse balance equations, the effects

of HVAC supplies on the interior surface temperature and thermal

mass are not simulated in the “corrector” step. Thus, the solutions

might not reflect the actual zone air heat balances when the ther-

mal mass and interior surface convective heat transfer account for

a significant portion in the balance equations. In this case study,
hicago and Houston have more extreme weather conditions than

an Francisco, which causes more drastic changes of the zone

hermal mass and surface temperatures. When the HVAC system

s not simulated in the solution period, the thermal mass and

nterior surface convective heat transfer are not accurately repre-

ented, which leads to the inaccurate inverse solutions. In Case 3,

ince HVAC is on during both measurement and solution periods,

he balance equations are close to the real zone air heat balances.

hus, the inverse solutions are more accurate than Case 2. 

Another finding is that the solution with moisture and CO 2 

alance equations are more accurate than the solution with the

ensible heat balance equations. That is due to the very small

mpacts of the interior surface moisture and CO 2 transfer on the

orresponding balance equations. 

. Discussion 

Traditionally, building performance simulations are used to

redict building energy use and environmental performance with

nown or assumed building characteristics, system operation

trategies and control logic, and occupancy schedules. However,

ome of the model inputs such as the air infiltration rate and

ccupancy schedule are highly uncertain and hard to measure

n the per-zone basis. As discussed in the introduction, extensive

esearch has been conducted to directly or indirectly measure

hose unknown variables. The limitations of those approaches

nclude the high cost of measurement devices, the disturbance of

ormal building operation, privacy concerns, and the cost of data

ollection and analytics. At the meanwhile, environmental sensing

echnologies become cheaper and more prevalent in modern

uildings. The novelty of this study is that it marries the physics-

ased building energy model with the building environmental

easurements to inversely solve the highly uncertain zone-level

ir infiltration rates and people count in buildings. 
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Table 3 

CV(RMSD) of the inverse solutions. 

 

b  

u  

i  

p  

g  

a  

C  

T  

i  

p  

t  

d  

a  

s  

m  

i  

c  

T  

t  

i  

s  

s  

H  

c  

d  

a  

m  

H  

b  

r  

t  

t  

i

 

p  

u  

w  

w  

F  

t  

r  

a  

c  

t  

a  

a  

s  

t

 

t  

t  

s  

t  

b  

t  
The inverse modeling algorithms are verified in the simulation-

ased case study. Validation of the inverse models in EnergyPlus

sing laboratory experiments and measured data was conducted

n another study and results are to be published in a separate

aper. In the case study, normal (forward) simulations are used to

enerate virtual measurements of HVAC system supply and zone

ir parameters including dry-bulb temperature, humidity ratio,

O 2 concentration, system supply air temperature and flow rate.

hen, the virtual measurements are used as the inputs of the

nverse simulation to solve the unknown air infiltration rate or

eople count. Finally, the solution is compared with the ground

ruth. Nine solution scenarios (grouped into three use cases) are

eveloped to mimic the different level of measurement availability

nd model assumptions. The simplest use case is when the HVAC

ystem is off during the measurements. And there is no need to

odel the HVAC system in the inverse simulation either. This case

s suitable when the building is not conditioned, or the HVAC

onfigurations are unknown for creating a building energy model.

he second use case is when the HVAC system is operating during

he measurement, the system supply terms are considered in the

nverse balance equations, but HVAC is not modeled in the inverse

imulations. This case is suitable when the measurements of both

pace and HVAC supply air parameters can be measured, but the

VAC details are unknown to create the building model. The most

omprehensive use case is when the HVAC system is operating

uring the measurements, and the HVAC system details are known

nd modeled in the inverse simulation. This use case requires the

ost amount of measurements and the knowledge to model the
VAC system. The modeling parameters can vary significantly from

uilding to building. The inverse modeling method is proposed for

eal case measurements. In the future, it is important to evaluate

he different use cases and measurement scenarios by comparing

he effort s and accuracy of the traditional approach against the

nverse modeling approach. 

It is found that those use cases have different accuracies de-

ending on what the environmental measurement is and what the

nknown parameter is. For air infiltration, Case 1 when solving

ith measured zone air temperature and Case 3 when solving

ith humidity ratio or CO 2 concentration have better accuracy.

or people count, overall, Case 1 and Case 3 have better accuracy

han Case 2 when the measurement is temperature or humidity

atio. But the solution with measured CO 2 concentration has good

ccuracy in all three cases. The differences in the accuracies are

aused by the different level of sensitivity of the air parameters

o the model settings. In the case study, zone air temperature

nd humidity ratio can be affected by more factors than zone

ir CO 2 concentration. Thus, the inverse solution with mea-

ured CO 2 concentration has better agreements with the ground

ruth. 

Although the inverse modeling algorithms can solve the uncer-

ain zone air infiltration rate and people count, they are subject

o some limitations. First, like the normal simulations, the inverse

imulation requires accurate model inputs of building geometry,

hermal zoning, lighting and equipment settings. The zone air

alance equations can correctly solve the unknown parame-

ers only when the known terms are input correctly. In future
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studies, we are interested in quantifying the sensitivities of the

inverse model results due to the uncertainties of those assumed

parameters, which will inform how the inverse models can be

applied, for example, at what stage of the model calibration to

gain the maximum value, or how to combine with the traditional

uncertainty analysis to improve the model accuracy. Secondly, the

current algorithms assume the occupants have a constant sensible

and latent heat generation rate, as well as a constant CO2 dissi-

pation rate. This assumption may not be accurate when there is a

variety of occupant type and activities. Thirdly, the environmental

measurements play an important role in the inverse solution. Data

processing such as aligning the measurements to the same time

interval with the simulation is necessary. Lastly, there can be com-

putational errors in the inverse simulation. For example, when the

indoor and outdoor air temperatures are too close, the program

may not solve the correct value of that timestamp because of the

overflowing issues. One potential future improvement is to couple

the temperature, humidity, and CO2 inverse algorithms. This way,

the inverse solutions from different measured parameters could

be used to validate each other at each timestep. 

5. Conclusions 

This study develops a novel inverse modeling method to solve

hard-to-measure building parameters such as zone air infiltration

and people count using easy-to-measure zone air temperature,

humidity and CO 2 concentration. The inverse method integrates

the physics-based building performance models with sensor data,

posing a new opportunity of sensor data application in building

performance simulation field. The new inverse modeling feature

developed in EnergyPlus can improve the simulation accuracy of

existing buildings as they reduce the uncertainty in model inputs.

Although the inverse models are implemented in EnergyPlus, the

algorithms are generic and can be adopted by other building

performance simulation engines. 

The inverse models should be used with caution in building

simulations as they require other building model parameters

to be reasonable or tuned to avoid overfitting of the calculated

zone air infiltration or people count. Therefore, it is suggested

the inverse models be used in later (when most model param-

eters are corrected or tuned) rather than early stages (when

most parameters are of uncertainty) of building energy modeling

workflow. 

Future research can extend the inverse models to simulta-

neously solve the two unknown zone parameters (infiltration

rate and people count) using two measured zone air parameters

(selecting two from air temperature, humidity, and CO 2 concentra-

tion). The three inverse models are publicly available in EnergyPlus

version 9.1 in 2019. Validation of the inverse models in EnergyPlus

using measured data from real buildings is also an important

future work. 
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