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ABSTRACT 

Building systems, including Heating, Ventilation and Air-conditioning (HVAC) systems, lighting systems, and security systems are key components of 
modern buildings. These systems are designed to deliver an ideal built environment, ensure the quality of building service and safety. The implementation 
of Building Automation System (BAS) has facilitated the building Operation and Maintenance (O&M), allowing building operators to better monitor 
and regulate building functions. One of the important abilities of modern BAS is raising alarms when building systems behave differently from design 
values. However, BAS usually generates an excessive amount of alarms every day. The lack of actionable information from those alarms makes it very 
challenging for building operators to take actions. The intent of this study is to find the reasons of the inefficiency of BAS alarm functions and to propose 
a solution which helps building operators make better O&M decisions based on the BAS alarms. This study analyzed a BAS in a university complex. 
First, the building’s HVAC systems were investigated. Second, interviews with facility managers and BAS field engineers were conducted to identify the 
existing deficiencies of BAS and future user expectations. Third, a data-mining framework was constructed to optimize current BAS alarm management 
function. The goal of this framework is to help filter out trivial alarms, categorize alarms by their impact category (e.g. equipment-related, occupant-
related, critical equipment operations), and prioritize the alarms based on the quantitative impacts. This paper presents an alarm management 
optimization solution for an 111754 sqft-complex on Carnegie Mellon University campus in Pittsburgh, PA. This study found that a good BAS alarm 
management function should be a collaborative effort among designers, BAS engineers, and building operators. Current deficiencies of BAS alarm 
management are caused by poor rule definitions and information isolations. The framework from this study could effectively filter out the trivial alarms 
from BAS, and provide actionable information for building operators. 

 INTRODUCTION 

Commercial buildings account for 19% of the total energy consumption in the United States. More than 50% of 
the energy consumed by commercial buildings goes toward space heating, ventilation and air-conditioning system and 
lighting system (ACEEE 2016). Building Automation System (BAS) has become increasingly popular under such a 
circumstance. A BAS is a distributed control system that helps to monitor and regulate building systems. When being 
properly applied, BAS can help to save considerable energy (Ahmed, Korres, Ploennigs, Elhadi, & Menzel, 2010). 
Commercial buildings implementing BAS are estimated to save an average 10% of overall energy consumption (Sustar 
and Goldschmidt 2007). In addition to energy savings, BAS can also help facility managers to maintain comfort levels 
in occupant spaces, and raise alarms when abnormal situations happen in building systems. 

However, BAS’s abilities such as system monitoring and controlling are often underutilized by various 
operational challenges (Munasinghe 2016). One of the challenges is the overwhelming amount of alarms generated by 



BAS every day. Most of the alarms have no self-diagnostics for possible reasons and potential impacts, and provide no 
actionable information. Thus, it becomes very difficult for facility managers to make preventive O&M decisions. For 
example, one of the six BAS solutions on CMU's Pittsburgh campus has generated over 610,000 alarms during the 
year of 2010 and 2016. One of the most frequent types of alarms is ‘Zone temperature abnormal’ and ‘Zone 
temperature normal’. An investigation shows that this type of alarms is caused by poor rule definition. The BAS 
continuously generates those alarms when the temperature in a zone fluctuates around the alarm thresholds. However, 
those alarms do not equal to ‘faults’ in HVAC systems. So, the facility managers choose to acknowledge them without 
any further inspection and maintenance, if not just ignore them. This could end up with energy waste, poor comfort 
level and even wrongly ignoring of severe alarms. 

Meanwhile, control systems for industrial processes are being continuously developed. Recent studies in the field 
of automation have shown that alarm management system along with sensing technologies can provide a good 
support for decision making and management. An analysis of alarm logs in the field of marine technology was 
conducted to identify and analyze abnormal situations that could affect process safety (Urban & Landryova ́, 2016). 
The alarm packages they used in the study are log files from a vessel control system. Their study supports the 
development of an engineering tool which allows operators to decide which alarms need immediate attention and 
which alarms could be postponed. To our knowledge, there is no similar study in building control field that addresses 
alarm filtering and ranking issues.  

Therefore, this paper aims to study BAS's alarm management functions in supporting building system O&M. 
Specifically, section 2 discusses the key findings from the interview with building operators regarding current issues 
with the BAS alarm management function and future expectations. Section 3 proposes a data-mining framework to 
process raw alarm data from a BAS, and classify and prioritize the alarms. Section 4 demonstrates an implementation 
of the framework in a case study on CMU campus. Section 5 summarizes the key findings, conclusions, and future 
work.  

INTERVIEW WITH BUILDING OPERATORS 

The goal of this paper is to optimize the alarm management function for facility managers so that they can make 
informed operation and maintenance decisions. Thus, it is necessary to understand the pros and cons of the current 
alarm management tool, and the user needs for future tools. A set of interviews is conducted to collect the opinions 
of building operators including facility managers and BAS field engineers. This section summarizes the current issues 
and future expectations for BAS’s alarm management function. 

Current Issues 

From the interview, it was found that facility managers do not rely a lot on the alarm management function 
provided by BAS solutions. There are several reasons. Firstly, there are too many alarms. It’s impossible for facility 
managers to be notified (usually by text message or email) when every single alarm occurs. Secondly, the information 
provided by the alarms is very limited. An alarm only provides the name of a device and some high-level descriptions. 
But no potential impacts and possible reasons are provided. Thirdly, most of the alarms are trivial and are not directly 
associated with faults in HVAC systems. Originally, alarms are designed to guide facility managers. But they are only 
considered as an insignificant reference in the real world. In most cases, facility managers make operational decisions 
based on their own experience. There is an obvious gap between what the user needs for BAS alarm management and 
what the tools provide. Because of the lack of actionable information provided by the alarms, facility management is 
likely to be reactive instead of proactive. A BAS is a big investment for an organization. The cost of deploying a basic 
BAS can be up to $7/sqft (Rawal 2016). Thus, it is wasteful if the tool does not contribute to building systems’ 
operation at its full potential.  

Expectations 



From the interview, the needs for future alarm management tools can be summarized as: simple, accurate, and 
powerful. The future alarm management tools in BAS should be more user-friendly. It should provide very clear 
information about the alarm and avoid meaningless and lengthy descriptions. It should be accurate—the trivial alarms 
should appear on the dashboard. It should help building operators make better operational decisions. For example, it 
can embed FDD algorithms and show the root cause of the alarms, and display the alarm and faults on the floorplan. 
It can also provide suggestions of how to react to the alarms and what the potential impacts are. This paper is to 
improve the alarm management function of BAS by classifying and prioritizing alarms. 

DATA-MINING FRAMEWORK 

Traditionally, BAS alarms are transmitted to building operators without sufficient actionable information. As 
shown in Figure 1 a), when alarms are generated, they are simply stored in alarm logs. Without proper classification 
and prioritization, potentially important alarms are often disguised by trivial ones. Building operators can not take 
advantage of the BAS alarm management function. To solve this problem, this paper proposes a data-mining 
framework that helps classify and prioritize BAS alarms. As shown in Figure 1 b), raw alarms are firstly classified 
based on their impact categories (i.e. equipment, occupant, critical operations). Then, the potential impacts of the 
alarms could be quantified. Finally, top alarms with detailed information including building, floor, space, related 
equipment, and durations could be shown to building operator. With this framework, top alarms from different 
categories could be shown based on user preferences, which could help building operators make informed O&M 
decisions. The main steps in the framework are discussed in this section. 

 

Figure 1 (a) Current alarm management schema and (b) proposed data-mining framework for alarm 
management.  

The proposed data-mining framework includes the following parts: (1) Raw alarm collection. The plain text 
format raw alarm data is collected from BAS. Each entry represents an alarm which has some descriptive features. 
The alarms from the target buildings are extracted for next steps. (2) Data preprocessing. The raw data has only 
several descriptive features, which is not interpretable for manual alarm analysis and not readable for data-mining 
algorithms. In this step, alarm data is parsed in a tabular format. (3) Categorizing BAS alarms. After the alarms are 
preprocessed, they can be categorized into several categories (e.g., equipment related, occupant related, critical 



operation related). (4) Prioritizing BAS alarms. The impacts of certain alarms are evaluated based on the findings from 
literature reviews and first principle calculations. With the quantified impacts and durations, the alarms can be ranked 
per user preferences. (5) Feedback to facility managers. Based on user preferences, the alarms with top impacts are 
shown to facility managers along with actionable information (e.g., measures to acknowledge the alarm, control 
sequences, root cause of the alarms, and maintenance recommendation.) 

A CASE STUDY 

The data-mining framework is implemented on the BAS alarms from a complex building on CMU campus. The 
raw alarm contains over 84,000 alarms during Feb 2010 to Feb 2016. In this section, data collection and 
preprocessing, alarm categorization, alarm impact quantification, and duration prediction are discussed. The case study 
demonstrates how the raw alarms are processed into a machine-readable format, how they are categorized into 
equipment-related, occupant-related, and critical operation alarms. It then shows how occupant-related alarms could 
be prioritized based on their potential energy consumption and thermal comfort impacts. 

Data Preprocessing 

Data preprocessing is the prerequisite for data-mining. In this case, the original alarms are stored in a text file 
with lengthy descriptions and random characters. Therefore, it’s necessary to convert the raw alarms from text format 
to tabular format that can be analyzed by data-mining algorithms. Ten original column features are extracted for each 
alarm. Table 1 shows the names of the original features and their meaning. 

Table 1.   Original Features Names and Meaning 
Number Feature name Meaning 

1 status      The alarm status, "off normal", and "normal" 
2 building    The building where the alarm occurs 

3 floor       The floor where the alarm occurs 

4 system      The system where the alarm occurs 

5 short_info  Short name of the alarm from the BAS dashboard 
6 range       The range of the alarm 

7 description Long description of the alarm 

8 fms         The facility manager who acknowledged the alarm 

9 occur       The time when an alarm occurred 
10 acknowledge The time when an alarm was acknowledged 

Although the alarms are machine-readable after extracting the column features, those features don’t provide enough 
useful information as they potentially could. Therefore, several steps of feature space reconfiguration are necessary. 

Breakdown Temporal Features. The original “occur” and “acknowledge” features are in string format which 
doesn't provide any temporal information. It is necessary to break it down into different features.  Figure 2 shows an 
example of how a temporal feature can be broken down into several features so that it can provide more meaningful 
information. 

 

Figure 2 String format temporal feature is broken down into several features. 



Calculate Alarm Durations. The “status” feature of an alarm has two possible values: “off normal” or 
“normal”. The BAS raises an “off normal” alarm when the value of a certain parameter exceeds the threshold and last 
for a period. When the value returns to the normal range, the BAS raises another alarm with the status being 
“normal”, indicating the alarm is released. The interval between those two alarms is the duration. Figure 3 shows how 
alarm durations are calculated. 

 

Figure 3 Calculate alarm duration. 
 
Attach AHU Relations. The original alarms provide location information at the zone level. For instance, from 

the alarm building operators can see the floor and room number. However, those alarms don't provide any 
information related to the system. In this step, the rooms are mapped to AHUs. This way, building operators can see 
the potential patterns of the alarms. 

Alarm Categorization 

To investigate the patterns, the alarms are categorized based on their affected objects. They are firstly divided 
into different space type groups and then categorized into Occupant-related, Equipment-related, and Critical 
operation groups. Table 2 shows the categorization rules. 

Table 2.   Alarm Categorization by Affected Objects 
Naming Convention of Alarms Space Type Category 

VAV Room ####, VAV Room Office, Dean’s Suite Office 

Occupant-related 

Classroom, Project, Reading Classroom 

VAV Room #### Conference, Future Use Conference 
Café, Corridor, Bridge, Study Carrell, Lobby, Collaboration 

Space, Collaborative Common, Nursing Common 

Kitchenette, Work/Copy/Print, Storage, Reception/Mail Service 

AHU, FCU, CHW, HWS HVAC Equipment 
Equipment-related 

Energy Meter, Monitoring, Sensor Meters 

Emergency Generator, Garage Exhaust, Electrical Closet, CRAC, 
Chilled Water System, Hot Water System, Rainwater System Critical Critical Operation 

Alarm Prioritization 

To prioritize the alarms, the potential impacts need to be quantified. Energy consumption and thermal comfort 
are two key metrics to quantify the impacts of occupant-related alarms. This section presents the calculation of 
instantaneous and long-term impacts. The alarm prioritization based on those two metrics are then discussed. 

Energy Consumption Impact. Due to the lack of energy metering and sub-metering in the sample building, 
there is no direct way of evaluating the energy impacts of the alarms. However, since most rooms in the building are 
served by VAV terminal units. And the discharge air temperature and airflow rate, room air temperature under alarm 



condition and normal condition can be acquired from the BAS. A first principle method is used to calculate the 
energy consumption rate impact under alarm conditions. The energy transfer rate (kW) between discharge air and 
room air can be calculated with Equation (1).  

! = #$%('()*+,-./0-'.223)  (1) 

Then, the difference of energy transfer rate between alarm condition and normal condition can be calculated 
with Equation (2), which is the energy consumption rate impact. 

∆" = "$%$&'-")*&'$%	  (2) 

With the energy transfer rate impact and alarm duration, the energy consumption impact (kWh) can be calculated 
with Equation (3).  

!"#$%&	()*+,- = ∆0	×	23$+-45"	 (3) 
Thermal Comfort Impact. Thermal comfort can be quantified with Predicted Mean Vote (PMV). According to 

Fanger’s thermal comfort model (Fanger, P.O. 1989), PMV is a function of metabolic rate, clothing factor, air dry-
bulb temperature, mean radiant temperature, relative humidity, and local air velocity. In this study, the PMV values 
under alarm conditions are calculated with the assumptions in Table 3. 

Table 3.   PMV Calculation Parameters 
Mode Cooling Heating 

Space Type Office, Classroom Service, 
Common 

Office, 
Classroom 

Service, 
Common 

Base Metabolic Rate (W) 58.15 58.15 58.15 58.15 

Relative Metabolic Rate 1.1 1.2 1.1 1.2 

Clothing Factor 0.5 0.5 1 1 

Air Dry-bulb Temperature (˚C) Assumed to be the zone air temperature. 

Mean Radiant Temperature (˚C) Assumed to be the zone air temperature. 

Air Relative Humidity (%) 50% 50% 40% 40% 

Like energy consumption impact, the cumulative thermal comfort impact can be calculated with Equation (4). 
To reflect both hot and cold situations, the absolute values of PMV is used in the calculation. 

!ℎ#$%&'	)*%+*$,	-%.&/, = |234|×67$&,8*9	 (4) 

Total Impact. After the energy consumption and thermal comfort impacts being quantified, the alarms can be 
prioritized based on their total impacts. Since the of energy consumption and thermal comfort have different priority 
in different space types, different levels of impacts could be assigned to them. For example, energy consumption has 
the same priority in different spaces, while office rooms may have higher thermal comfort priority than corridors 
because occupants spend the longer time in them. Figure 4 shows an example of energy consumption impact and 
thermal comfort impact normalization and grouping by different space type.  



 

Figure 4 (a) Total energy consumption impact grouping and (b) total thermal comfort impact grouping.  
In the example, office rooms have a lower threshold for thermal comfort impact than common spaces and 

service areas, meaning office rooms have more strict requirements for thermal comfort. With the normalization and 
grouping, the total impact of the alarms could be calculated with Equation (5).  

!"#$%	'()$*# = ,×./0123	4"/56()#7"/	'()$*# + 9×!ℎ01($%	4"(;"1#	'()$*#	 (5) 

The grouping thresholds in Figure 4 and weighting factors A and B in Equation (5) can vary based on building 
operators’ preferences. For example, if thermal comfort is more critical in a building, the grouping thresholds could be 
lower and factor B could be increased. Finally, a 3D visualization function is built upon the impact quantification 
results. It allows users to see the basic information of the alarms including building, floor, room, alarm type and 
occurring time. In addition, it provides the potential impacts on energy consumption and thermal comfort and the 
alarm priority. Figure 5 shows an example of the visualization. 

 

Figure 5 3D visualization of alarm information and priority.  

The interactive visualization tool allows facility managers to filter out top alarms from the overwhelming number 
of trivial ones, and make more informative operation and maintenance decisions. 

Discussion 

As discussed before, there is very limited research on the BAS alarm management topic. The interview with 
facility managers also indicates the need for a better BAS alarm management function which provides alarm 
categorization and prioritization. This study has proposed a data-mining framework that helps to preprocess the raw 
alarm, categorize the alarms based on their affected objects and prioritize the alarms based on potential energy 
consumption thermal comfort impacts. The implementation of the framework is demonstrated by a case study of a 
building on CMU campus. In the case study, different impact metrics such as energy consumption and thermal 



comfort are weighted differently. The quantification results could be easily used to prioritize and visualize the alarms 
and their detailed information. With the visualization, facility managers can navigate to the top alarms with less effort 
than before and obtain key relevant information behind the scene. 

In this paper, only occupant-related alarms are investigated. The potential energy consumption impacts of those 
alarms are quantified via first principle calculations. In buildings with detailed sub-metering, sensor data could be 
coupled into this framework for the impact quantification. Moreover, other impact metrics such as indoor CO2 level, 
operation cost, equipment life could be added to the framework to satisfy different user needs. Currently, the alarm 
prioritization is based on the alarm duration calculated from historical data. With the data preprocessing and feature 
reconfiguration methods proposed in this framework, a machine learning model could be developed to predict the 
durations and associated impacts of future alarms. The model would predict the duration of a certain alarm with its 
basic information, operation schedule and weather condition. Details of the developing and implementation of the 
machine learning model are presented in another paper by the authors.  

In the future, one potential application is to integrate the framework into Computerized Maintenance 
Management System (CMMS). CMMS could receive real-time alarm log, sensor measurements, and weather data. It 
then feeds those data into the data-mining framework. After categorization and prioritization, top alarms in different 
categories could be shown to facility managers. Operation and maintenance workflows under certain alarm conditions 
could also be standardized. 
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NOMENCLATURE 

!			 	 = Energy transfer rate between discharge air and room air (kW)	
!		    = discharge air volumetric flow rate (m3/s) 
!"		     = volumetric specific heat capacity of air (kJ/m3•K) 
!"#$%&'()*		  = the VAV terminal discharge air temperature (˚C) 

!"##$		  = the room air temperature (˚C) 
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